If it's not what You are looking for type in the equation solver your own equation and let us solve it.
8y^2+18y-5=0
a = 8; b = 18; c = -5;
Δ = b2-4ac
Δ = 182-4·8·(-5)
Δ = 484
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{484}=22$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(18)-22}{2*8}=\frac{-40}{16} =-2+1/2 $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(18)+22}{2*8}=\frac{4}{16} =1/4 $
| 5n-6=5n | | 6^x-6=36 | | 12.5x−10.2=3(2.5x+4.2)-6 | | k/2+7=41 | | -18=-2(x-7) | | 3x+9=3x+7= | | 75x/(x+2)=70 | | Y=-5/8x+3 | | 2/7=h/14-2/7 | | 14(3-x)=28 | | 1436.16x=4.59 | | -21/12=3/4c | | 2=9+r/6 | | 14x+3-157=4x+10 | | 12x-62=11x+200 | | -11x+15x+8=-8 | | -6(5-5n)+8n=7(-6+5n) | | 9x^2+21x+2=0 | | x-(-)=-28 | | -6+-13x+13x=-18 | | 5x+38=4x+42 | | 1x-93=5x+156 | | 8x-57=10-52 | | 4x+26=12X+-54 | | |x=8|=2 | | 8q+5=-2q+20 | | 4(w+1)-w=3(w-1)=7 | | z/5+3=-63 | | 4/3x+3/7=5/2 | | 7x-11=2x-23 | | 9x-15x-5=-19 | | 7x-1=2x-23 |